# Deepwater Horizon Oil Spill: Assessment of Potential Impacts on the Deep Soft-Bottom Benthos

Interim Data Summary Report





NOAA Technical Memorandum NOS NCCOS 166 February 2013

#### **Disclaimer:**

This report has been reviewed by the National Ocean Service of the National Oceanic and Atmospheric Administration (NOAA) and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States government. The results presented herein are those of the authors and do not necessarily reflect the views of NOAA or any of its sub-agencies.

#### **Citation for this report:**

Montagna, P.A., J.G. Baguley, C. Cooksey, and J.L. Hyland. 2013. Deepwater Horizon Oil Spill: Assessment of Potential Impacts on the Deep Soft-Bottom Benthos. Interim Data Summary Report. NOAA Technical Memorandum NOS NCCOS 166. NOAA, National Centers for Coastal Ocean Science, Charleston, SC. 32 p.

Cover photo credit: Cynthia Cooksey, NOAA, Charleston, SC

# Deepwater Horizon Oil Spill: Assessment of Potential Impacts on the Deep Soft-Bottom Benthos

Interim Data Summary Report

Paul A. Montagna<sup>1</sup>, Jeffrey G. Baguley<sup>2</sup>, Cynthia Cooksey<sup>3</sup>, and Jeffrey L. Hyland<sup>3</sup>

<sup>1</sup>Texas A&M University--Corpus Christi, Corpus Christi, TX <sup>2</sup>University of Nevada—Reno, Reno, NV <sup>3</sup>NOAA/NOS National Centers for Coastal Ocean Science, Charleston, SC

February 2013

NOAA Technical Memorandum NOS NCCOS 166





United States Department of Commerce: Rebecca Blank, Acting Secretary National Oceanic and Atmospheric Administration: Jane Lubchenco, Under Secretary of Commerce for Oceans and Atmosphere and NOAA Administrator National Ocean Service:

Holly Bamford, Assistant Administrator

#### Abstract

A study was initiated in May 2011, under the direction of the Deepwater Horizon (DWH) Natural Resource Damage Assessment (NRDA) Deepwater Benthic Communities Technical Working Group (NRDA Deep Benthic TWG), to assess potential impacts of the DWH oil spill on sediments and resident benthic fauna in deepwater (> 200 meters) areas of the Gulf. Key objectives of the study were to complete the analysis of samples from 65 priority stations sampled in September-October 2010 on two DWH Response cruises (Gyre and Ocean Veritas) and from 38 long-term monitoring sites (including a subset of 35 of the original 65) sampled on a follow-up NRDA cruise in May-June 2011. The present progress report provides a brief summary of results from the initial processing of samples from fall 2010 priority sites (plus three additional historical sites). Data on key macrofaunal, meiofaunal, and abiotic environmental variables are presented for each of these samples and additional maps are included to depict spatial patterns in these variables throughout the study region. The near-field zone within about 3 km of the wellhead, where many of the stations showed evidence of impaired benthic condition (e.g. low taxa richness, high nematode/harpacticoid-copepod ratios), also is an area that contained some of the highest concentrations of total petroleum hydrocarbons (TPH), total polycyclic aromatic hydrocarbons (total PAHs), and barium in sediments (as possible indicators of DWH discharges). There were similar co-occurrences at other sites outside this zone, especially to the southwest of the wellhead out to about 15 km. However, there also were exceptions to this pattern, for example at several farther-field sites in deeper-slope and canyon locations where there was low benthic species richness but no evidence of exposure to DWH discharges. Such cases are consistent with historical patterns of benthic distributions in relation to natural controlling factors such as depth, position within canyons, and availability of organic matter derived from surface-water primary production.

## **1. Introduction**

The Deepwater Horizon (DWH) incident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, in Mississippi Canyon Block 252, releasing an estimated 4.9 million barrels of oil over the following three months (NOAA and USGS 2010). While oilbudget estimates suggested that a majority of the oil had been removed by cleanup operations and other natural mechanisms (NOAA and USGS 2010), there was also a possibility that large portions could have moved into offshore and deepwater sediments via several potential pathways — e.g., sinking of oil and/or dispersed oil droplets adsorbed onto suspended particles, or incorporated into copepod fecal pellets, in either surface or sub-surface layers; onshore-offshore transport of oil-laden particles; sinking of heavier oil by-products resulting from the burning of oil; or settling of oil-mud complexes resulting from the injection of drilling mud during top-kill operations (UAC 2010). In addition, drill cuttings, drill fluids, and other containment fluids commonly used during offshore oil-drilling operations (Neff et al. 1987, Neff 2005) may have been released and deposited to the bottom during the blowout event.

Such contaminants that ultimately make their way to the seafloor pose risks particularly to benthic fauna living within or in close association with bottom substrates and unable to avoid exposure due to their relatively sedentary existence. Potential losses are of concern because these fauna serve vital functional roles in the deep-sea ecosystem including sediment bioturbation and stabilization, organic matter decomposition and nutrient regeneration, and secondary production and energy flow to higher trophic levels (Danovaro et al. 2008, Thistle 2003, Gage 2003, Gray 1981, Tenore 1977). In many places, the deep-sea benthos may also represent important reservoirs of marine biodiversity (e.g., Hessler and Sanders 1967, Jumars 1976, Gage 1979, Hecker and Paul 1979, Rex 1981, Rowe et al. 1982, Grassle and Morse-Porteous 1987, Grassle and Maciolek 1992, Blake and Grassle 1994). High benthic species diversity has been reported for the Gulf of Mexico with a maximum on the mid to upper continental slope at depths between 1200 to 1600 meters (Tyler 2003; Wei and Rowe 2006; Rowe and Kennicutt II 2008, 2009; Haedrich et al. 2008; Wei et al. 2010), which coincides with depths of the DWH well site and potential zone of exposure. A recent study by Danovaro et al. (2008) provides evidence linking the loss of benthic biodiversity to an exponential decline in deep-sea ecosystem functioning.

A study was initiated in May 2011, under the direction of the DWH Natural Resource Damage Assessment (NRDA) Deepwater Benthic Communities Technical Working Group (NRDA Deep Benthic TWG), for the purpose of assessing potential impacts of the DWH oil spill on sediments and resident benthic fauna in deepwater (> 200 meters) areas of the Gulf. Key objectives of the study are aimed at completing the analysis of samples from 65 priority stations sampled in September-October 2010 on two DWH Response cruises (*Gyre* and *Ocean Veritas*) and from 38 long-term monitoring sites (including a subset of 35 of the original 65) sampled on a follow-up NRDA cruise in May-June 2011 (Fig. 1). Further details are provided in the Deep Benthic TWG Study Plan for Deepwater Sediment Sampling (approved May 2011). The present progress report provides a summary of results from the initial processing of samples from fall 2010 priority sites (as called for under the Study Plan).



**Fig. 1**. Map of study area and sampling sites: (A) All sampling sites (concentric rings are 25 km apart); (B) Sites < 25km of MC252; Station NF006 = NF006MOD elsewhere in report.

## 2. Methods

The data presented here are from sediment samples collected on prior Response cruises conducted from September 16 – October 19, 2010 on the R/V Gyre and from September 24 – October 30, 2010 on the R/V Ocean Veritas. Both cruises collected sediment samples for analysis of oil and other drilling-related contaminants, benthic communities, and toxicity (not

presented here) at near-field sites around the wellhead and additional far-field sites under known surface-water slick areas, beneath subsurface dispersed oil, and at historic sampling sites with prespill benthic data — i.e., Deep Gulf of Mexico Benthos Program (DGoMB) sites (Rowe and Kennicutt 2008, 2009). Also on both cruises, a multi-corer system (OSIL 2012) was used to collect benthic samples (Fig. 2). This is a unique system designed to collect undisturbed samples of seabed sediment and overlying water with minimal risk of a bow-wave effect that might otherwise displace surface sediment and any associated drilling contaminants. While benthic samples were obtained during these cruises from a total of 169 sites, the data here are represented by a subset of 68 stations including 65 priority sites identified in the Study Plan (May 2011, Objective 2) and three additional historical sites (FFC1, FFMT2, FFMT6 = DGoMB sites C1, MT2, and MT6 respectively). Of the 65 priority sites, 17 are from near-field locations within 3 km of the wellhead, in an area where OSAT (2010) data showed sediments containing hydrocarbons consistent with MC252 oil and at concentrations in excess of EPA aquatic life benchmarks: 23 are from additional mid-field sites within 25 km of the wellhead; 15 are from far-field sites > 25 km of the wellhead within suggested paths of oil movement based on subsurface trajectory





**Fig. 2.** OSIL multi-corer system (top) and close-up view of sediment core tubes (bottom).

modeling results (UAC 2010); two are from far-field sites > 25 km NW of the wellhead; and eight are pre-spill DGoMB sites (D002S, D094S, FFC4, FFC7, FFMT1, FFMT3, FFMT4, and FFMT5 = DGoMB sites S37, S35, C4, C7, MT1, MT3, MT4, and MT5 respectively) (Fig. 1).

Methods for the collection and analysis of benthic samples are described in the Deep Benthic TWG Study Plan (NRDA Deep Benthic TWG 2011) and are consistent with standard techniques in marine benthic ecology (e.g., Elefteriou and McIntyre 2005). Briefly, macrofaunal samples were collected and processed in the following manner: (1) three sediment cores (0.01 m<sup>2</sup> each) were collected from a single multi-core drop at most stations (i.e., all but eight of the 68 stations, where only 1 - 2 cores were obtained to support other sampling requirements, see Table 1 and corresponding footnote); (2) each core was extruded into two vertical sections (0 – 5 cm and 5 –

10 cm); (3) resulting samples were preserved in the field in 4% buffered formalin with Rose Bengal, sieved in the laboratory on a 0.3-mm mesh screen, and transferred to 70% ethanol; and (4) animals in each of the above samples were sorted from remaining sediment and debris under a dissecting microscope, counted, and identified typically to the family level.

Meiofaunal samples were collected and processed in the following manner: (1) one sediment core  $(0.01 \text{ m}^2)$  was collected from a single multi-core drop at all but two of the 68 stations (ALTFF012 and D013S, where part or all of the samples were lost during transit from the field to the lab); (2) each core was extruded into two vertical sections (0 - 1 cm and 1 - 3 cm) and sub-sampled using a 0.0024 m<sup>2</sup> corer; (3) resulting samples were treated in the field with 7% MgCl<sub>2</sub> as an initial relaxant, fixed in a solution of 4% buffered formalin with Rose Bengal, and sieved subsequently in the laboratory on a 0.045-mm mesh screen; and (4) after sieving, animals in each of the above samples were extracted from remaining sediment and debris using isopycnic centrifugation in Ludox HS-40 (Burgess 2001), counted, and identified to family level at a later date). Specimens were identified to family or higher taxonomic levels in order to reduce processing time and because many of these deep-sea fauna have not been described previously to the species level. Also, using data from higher taxonomic levels in benthic studies has been shown to depict patterns similar to those using species-level data (Heip et al. 1988, Warwick 1988, Montagna and Harper 1996) and is a much faster process.

Data on abiotic environmental variables (e.g., chemical contaminants in sediments, grain size, total organic carbon, site locations, and water depth) were downloaded from the Environmental Response Management Application (ERMA) Gulf Response website (<http://gomex.erma.noaa.gov>). These data correspond to samples collected and processed under initial DWH Response efforts as described in the OSAT (2010) report. The contaminant data focus on concentrations of total petroleum hydrocarbons (TPH), total polycyclic aromatic hydrocarbons (total PAH), and selected metals (barium, chromium, lead, and zinc). Metals were analyzed by Lancaster Laboratories using EPA Method 6010C (inductively coupled plasma-atomic emission spectrometry). TPH was analyzed by either Lancaster Laboratories or Battelle, depending on the sample, using EPA Method 8015 (non-halogenated organics by gas chromatography). PAHs were measured by Battelle using EPA Method 8270-SIM (semi-volatile organic compounds by gas chromatography/mass spectrometry with selective ion monitoring); total PAH values were calculated by Battelle as the sum of individual PAHs listed in Appendix I.

Though processed separately, vertical sections of the same core and replicate cores from the same multi-core drop were combined mathematically for data-analysis purposes in the present report. Data from different vertical sections of the same core were collapsed into a single common species list for the individual core. Data from replicate cores from the same multi-core drop (applies to macrofauna only) were averaged and reported as per-station means. Results are presented using simple tables to document key macrofaunal, meiofaunal, and abiotic environmental variables for each of the various samples processed to date (Tables 1, 2, and 3 respectively) and additional maps to illustrate spatial distributions of selected variables throughout the study region (Figs. 3-8). Bathymetric contours in the figure maps are based on estimated seafloor topography for the Gulf of Mexico as presented in the ERMA database and derived from the SRTM30\_PLUS V6.0 global bathymetry grid developed by Scripps Institution

of Oceanography. Because the contours are approximations, Table 3 should be consulted for actual measured station depths.

## 3. Summary of Results from 2010 Response Samples

## 3.1 Macrofauna

- Most stations were dominated (two most abundant taxa) by polycheate worms including Acrocirridae, Capitellidae, Cirratulidae, Cossuridae, Dorvilleidae, Lumbrineridae, Maldanidae, Opheliidae, Paraonidae, Spionidae, and Syllidae (Table 1). Less frequently occurring dominants included amphipod (Ampeliscidae) and ostracod (Myodocopida, Podocopida) crustaceans; bivalve, gastropod, and aplacophoran molluscs; and nemerteans.
- Macrofaunal richness (# taxa), H' diversity (log<sub>e</sub>), and density (# individuals m<sup>-2</sup>) averaged 21 station<sup>-1</sup>, 2.53 station<sup>-1</sup>, and 8987 m<sup>-2</sup> respectively and ranged from 4 39 station<sup>-1</sup>, 0.86 3.30 station<sup>-1</sup>, and 1172 21084 m<sup>-2</sup> respectively across the various stations.
- Lowest values of macrofaunal richness (lower 25<sup>th</sup> percentile of values, red dots in Fig. 3) occurred at stations close to the DWH wellhead, namely eight stations within about 1.5 km in various directions (D042S, D038SW, LBNL1, ALTNF001, D031S, D034S, NF006MOD, D040S) and one station (LBNL3) located 5 km to the southwest, in addition to several farther-field sites i.e., Station LBNL9 located 34 km to the southwest, Station FFMT1 at the head of Mississippi Canyon, Station 2.27 on the outer shelf 60 km to the northwest of the wellhead, and five other stations at deeper mid- to lower-slope locations (FFMT4, D013S, FFMT5, FFMT6, D002S). There also was a high concentration of stations with intermediate values (lower 25<sup>th</sup> to 50<sup>th</sup> percentile, yellow dots) particularly around 3 km from the wellhead in various directions and further away to the southwest.

## 3.2 Meiofauna

- The dominant (two most abundant) meiofaunal taxa at all stations consisted of either harpacticoid copepods, nematodes, or unidentified nauplii (Table 2). Other subdominant taxa at many of the stations (data not shown) included kinorhynchs, polychaetes, ostracods, and bivalves.
- Numbers of meiofaunal taxa, H' diversity (log<sub>e</sub>), and density (# individuals m<sup>-2</sup>) averaged 9 core<sup>-1</sup>, 0.60 core<sup>-1</sup>, and 2,425,513 m<sup>-2</sup> respectively and ranged from 4 13 core<sup>-1</sup>, 0.09 1.25 core<sup>-1</sup>, and 204,137 8,654,967 m<sup>-2</sup> respectively across the various stations.
- Similar to the macrofaunal pattern, lowest values of meiofaunal richness (lower 25<sup>th</sup> percentile of values, red dots in Fig. 4) tended to occur at stations relatively close to the DWH wellhead and to the southwest including nine stations within about 1.5 km in various directions (D042S, D038SW, LBNL1, ALTNF001, D031S, D034S, NF006MOD, D040S, D044S), one station (4.44) 10 km to the north, and 10 stations from 3 37 km to the southwest (NF009, LBNL17, LBNL4, LBNL5, FF010, LBNL7, D014S, D057S, LBNL9, D017S) in addition to several farther-field sites at the head of Mississippi Canyon (FFMT1) and in deeper mid- to lower-slope locations (FFC4, FFMT5, FFMT6, D007S).

• Stations with the highest ratios of nematode to adult harpacticoid copepod abundances (N/H) also tended to be at sites nearest to the wellhead, including 10 stations within 3 km in various directions (LBNL1, ALTNF001, D040S, NF006MOD, D031S, NF008, NF009, NF010, NF011, NF012) and four additional sites within 10 km to the north (2.21, D050S) and southwest (LBNL3, LBNL5) (Table 2, Figs. 5 and 6). Prior studies (Montagna et al. 1987, Shirayama and Ohta 1990) have noted higher nematode to harpacticoid ratios in oil-contaminated sediments compared to lesser or uncontaminated sites due to an increase in the relative abundance of pollution-tolerant nematodes and a decrease of the more sensitive harpacticoids.

## **3.3 Abiotic Environmental Variables**

- Locations (latitude, longitude) and key abiotic environmental variables water depth, total organic carbon (TOC) and % silt-clay content of sediment, and concentrations of total petroleum hydrocarbons (TPH), total polycyclic aromatic hydrocarbons (Total PAH) and selected metals (barium, chromium, lead, and zinc) in sediments are listed in Table 3 for each of the sampling sites.
- With the exception of one site on the outer shelf (Station 2.27 at 76 m), depths ranged from 211 2767 m and averaged 1394 m. Sediments throughout the study region consisted predominantly of muds with high silt-clay content (averaging 96.3% and ranging from 69.4% 99.2%). While three stations (D043S, D044S, M011S) had sediment TOC levels below the detection limits, TOC levels at most stations were moderate to high averaging 14,246 ppm (1.4%) and ranging up to 32,600 ppm (3.2%).
- Concentrations of TPHs in sediments ranged from 0 5,023,004 μg/kg (Table 3). Highest concentrations (upper 25<sup>th</sup> percentile of values = 183,286 – 5,023,004 μg/kg; red dots in Fig. 7) tended to occur at stations nearest to the DWH wellhead, i.e. at 13 stations within about 3 km in various directions (D042S, D038SW, LBNL1, ALTNF001, D031S, D034S, NF006MOD, D040S, D044S, NF009, NF011, NF013, ALTNF015) and at three stations from 8-10 km to the southwest (LBNL4, LBNL5, FF010).
- Concentrations of total PAHs in sediments ranged from 28 47,559 µg/kg (Table 3). Similar to TPHs, highest concentrations (upper 25<sup>th</sup> percentile of values = 1,612 – 47,559 µg/kg; results not plotted) tended to occur at stations nearest to the DWH wellhead, i.e. at 12 stations within about 3 km in various directions (D042S, D038SW, LBNL1, ALTNF001, D031S, NF006MOD, D040S, D044S, NF009, NF011, NF013, ALTNF015) and at two stations 10 km to the southwest (LBNL5, FF010).
- Metals known to occur at elevated levels on the seafloor in association with offshore drilling operations often include chromium, lead, zinc, and especially barium (Neff et al. 1987, Neff 2005). In the present study, concentrations of barium in sediments ranged from 126 12,700 µg/g (Table 3). Highest concentrations (upper 25<sup>th</sup> percentile of values = 863 12,700 µg/g; red dots in Fig. 8) also tended to occur at stations nearest to the DWH wellhead i.e. at eight stations within about 1.5 km in various directions (D042S, D038SW, LBNL1, ALTNF001, D031S, D034S, D040S, D044S) and at four stations from 3-15 km to the southwest (NF008, ALTNF015, D021S, LBNL7) in addition to four other farther-field sites located from 50-200 km to the southwest (D015S, ALTFF12, FFMT3, FFC1).
- The near-field zone within about 3 km of the wellhead, where many of the stations showed evidence of impaired benthic condition (e.g. low taxa richness, high N/H ratios),

also is an area that contained some of the highest concentrations of TPH, total PAHs and Ba in sediments (as possible indicators of DWH discharges). There were similar cooccurrences at other sites outside this zone, especially to the southwest of the wellhead out to about 15 km (e.g., LBNL4, LBNL5, LBNL7, FF010). However, there also were exceptions to this pattern, for example at several farther-field sites in deeper-slope and canyon locations (e.g., FFMT1, FFMT4, FFMT5, FFMT6, FFC4, D013S, D007S, D002S) where there was low benthic infaunal richness but no evidence of exposure to DWH discharges. Such cases are consistent with historical patterns of benthic distributions in relation to natural controlling factors such as depth, position within canyons, and availability of organic matter derived from surface-water primary production (Rowe and Kennicutt 2008, 2009; Wei and Rowe 2006, Wei et al. 2010).

#### 4. References

- Blake, J.A. and J.F. Grassle. 1994. Benthic community structure on the U.S. Atlantic slope off the Carolina: Spatial heterogeneity in a current-dominated system. *Dee-Sea Res. II*, 41: 835-874.
- Burgess, R. 2001. An improved protocol for separating meiofauna from sediments using colloidal silica sols. *Mar. Ecol. Prog. Ser*, 214: 161-165.
- Danovaro, R.,C. Gambi, A.D. Anno, C. Corinaldesi, S. Fraschetti, A. Vanreusel, M. Vincx, and A.J. Gooday. 2008. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. *Current Biology*, 18: 1-8.
- Elefteriou, A. and A. McIntyre (eds). 2005. Methods for the study of marine benthos. Third edition. Blackwell Science Ltd, Oxford UK, 440 p.
- Gage, J.D. 1979. Macrobenthic community structure in the Rockall Trough. *Ambio Special Repor*, 6: 43-46.
- Gage, J.D. 2003. Food inputs, utilization, carbon flow, and energetics. Chapter 11, pp. 313-380, in P.A. Tyler (ed), Ecosystems of the Deep, Elsevier Science B.V., Amsterdam, The Netherlands, 569 p.
- Grassle, J.F. and N.J. Maciolek. 1992. Deep-sea species richness: Regional and local diversity estimates from quantitative bottom samples. *Am. Nat.*, 139: 313-341.
- Grassle, J.F. and L. Morse-Porteous. 1987. Macrofaunal colonization of disturbed deep-sea environments and the structure of deep-sea benthic communities. *Deep-Sea Res.*, 34: 1911-1950.
- Gray, J.S. 1981. The ecology of marine sediments. Cambridge Univ. Press, Cambridge, UK, 185 p.
- Haedrich, R.L., J. Devine, and V. Kendal. 2008. Predictors of species richness in the deepbenthic fauna of the northern Gulf of Mexico. *Deep-Sea Res. II*, 55: 2650-2656.
- Hecker, B. and A.Z. Paul. 1979. Abyssal community structure of the benthic infauna of the eastern equatorial Pacific: DOMES sites A, B, and C. Pages 287-308 *in* J.F. Bischoff and D.Z. Piper, eds, Marine geology and oceanography of the Pacific Manganese Nodule Province. *Mar. Sci.* 9, Plenum, New York.
- Heip, C., Warwick, R.M., Carr, M.R., Herman, P.M.J., Huys, R., Smol, N. and Van Holsbeke, K. 1988. Analysis of community attributes of the benthic meiofauna of Frierfjord/Langesundfjord. *Mar. Ecol. Prog. Ser.* 46:171-180.
- Hessler, R.R. and H.L. Sanders. 1967. Faunal diversity in the deep sea. Deep-Sea Res., 14: 65-78.
- Jumars, P.A. 1976. Deep-sea species diversity: does it have a characteristic scale? *J. Mar. Res.*, 34: 217-246.
- Montagna, P.A., J.E. Bauer, J. Toal, D. Hardin, and R.B. Spies. 1987. Temporal variability and the relationship between benthic meiofaunal and microbial populations of a natural coastal petroleum seep. *J. of Mar. Res.*, 45: 761-789.

- Montagna, P.A. and D. E. Harper, Jr. 1996. Benthic infaunal long-term response to offshore production platforms. *Can. J. of Fish. and Aquat. Sci.* 53:2567-2588.
- Neff, J.M., N.N. Rabalais, and D.F. Boesch. 1987. Offshore oil and gas development activities potentially causing long-term environmental effects. Chapter 4, pp. 149-174, in D.F. Boesch and N.N. Rabalais (eds), Long-Term Environmental Effects of Offshore Oil and Gas Development, Elsevier Applied Science, London and New York, 708 p.
- Neff, J.M. 2005. Composition, Environmental Fates, and Biological Effect of Water Based Drilling Muds and Cuttings Discharged to the Marine Environment: A Synthesis and Annotated Bibliography. Prepared for Petroleum Environmental Research Forum (PERF) and American Petroleum Institute. Battelle, Duxbury, MA. 73 p.
- NOAA and USGS. 2010. BP Deepwater Horizon Oil Budget: What Happened to the Oil? <a href="https://www.noaanews.noaa.gov/stories2010/PDFs/OilBudget\_description\_%2083final.pdf">www.noaanews.noaa.gov/stories2010/PDFs/OilBudget\_description\_%2083final.pdf</a>>.
- NRDA Deepwater Benthic Communities Technical Working Group (NRDA Deep Benthic TWG). 2011. Deepwater sediment sampling to assess potential post-spill benthic impacts from the Deepwater Horizon oil spill. Mississippi Canyon 255 Oil Spill, NRDA Sampling Plan. NOAA, Office of Response and Restoration. 35 p.
- OSAT. 2010. Sub-sea and sub-surface oil and dispersant detection: Sampling and monitoring. Operational Science Advisory Team (OSAT) report, 17 December 2010. OSAT, Unified Area Command, New Orleans, LA.

<<u>http://www.restorethegulf.gov/release/2010/12/16/data-analysis-and-findings</u>>.

- OSIL 2012. Bowers and Connelly Multiple Corers. Online brochure at <a href="http://www.dt.insu.cnrs.fr/instr\_ocean/doc\_instr/brochure\_b&c\_multiplecorers.pdf">http://www.dt.insu.cnrs.fr/instr\_ocean/doc\_instr/brochure\_b&c\_multiplecorers.pdf</a>>.
- Rex, M. A. 1981. Community structure in the deep-sea benthos. *An. Rev. Ecol. & System.*, 12:331–353.
- Rowe, G.T. and M.C. Kennicutt II, eds. 2008. The Deep Gulf of Mexico Benthos Program. Deep-Sea Research Part II, 55 (Issues 24-26).
- Rowe, G.T. and M.C. Kennicutt II, eds. 2009. Northern Gulf of Mexico continental slope habitats and benthic ecology study: Final report. U.S. Dept. of the Interior, Minerals Management. Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2009-039. 456 pp.
- Rowe, G.T., P.T. Polloni, and R.L. Haedrich. 1982. The deep-sea macrobenthos on the continental margin of the northwest Atlantic Ocean. *Deep-Sea Res.*, 29: 257-278.
- Shirayama, Y. and S. Ohta. 1990. Meiofauna in a cold-seep community off Hatushima Central Japan. J. *of the Oceanograph. Soc. of Japan*, 46: 118-124.
- Tenore, K.R. 1977. Food chain pathways in detrital feeding benthic communities: A review, with new observations on sediment resuspension and detrital recycling. Pages 37-54, *in* B.C. Coull (ed), Ecology of the Marine Benthos, Univ. of South Carolina Press, Columbia, South Carolina, 467 p.
- Thistle, D. 2003. The deep-sea floor: An overview. Chapter 2, pp. 5-38, *in* P.A. Tyler (ed), Ecosystems of the Deep, Elsevier Science B.V., Amsterdam, The Netherlands, 569 p.

- Tyler, P.A. 2003. Introduction. Chapter 1, pp. 1-4, *in* P.A. Tyler (ed), Ecosystems of the Deep, Elsevier Science B.V., Amsterdam, The Netherlands, 569 p.
- UAC. 2010. NOAA cumulative subsurface trajectory for deepwater. Pages 27-28 in Deepwater Horizon MC 252 Response, Unified Area Command, Strategic Plan for Sub-sea and Subsurface Oil and Dispersant Detection, Sampling, and Monitoring, November 13, 2010. Unified Area Command (UAC), New Orleans, LA. 95 p.
- Warwick, R.M. 1988. Analysis of community attributes of the macrobenthos of Frierfjord/ Langesundfjord at taxonomic levels higher than species. *Mar. Ecol. Prog. Ser.* 46:167-170.
- Wei, C. and C. Rowe. 2006. Zonation in the macrobenthos of the deep northern Gulf of Mexico. ICES Annual Meeting, Maastricht, Holland, September 2006.
- Wei, C., G.T. Rowe, G.F. Hubbard, A.H. Scheltema, G.D.F.Wilson, I. Petrescu, J.M. Foster, M.K. Wicksten, M. Chen, R. Davenport, Y. Soliman, and Y. Wang. 2010. Bathymetric zonation of deep-sea macrofauna in relation to export of surface phytoplankton production. *Mar. Ecol. Prog. Ser.*, 399: 1-14.

#### 5. Acknowledgments

This work is part of an ongoing study conducted under the direction of the Deepwater Horizon (DWH) Natural Resource Damage Assessment, Deepwater Benthic Communities Technical Working Group. Benthic samples discussed in this report were collected during the Response phase of the incident, under direction of the Unified Area Command (UAC), on cruises aboard the R/V Gyre (September 16 - October 19, 2010) and R/V Ocean Veritas (September 24 -October 30, 2010). Our appreciation is extended to members of the ship and science crews for their contributions to these initial field efforts. We especially thank Ian Hartwell (NOAA, Silver Spring MD) and Rick Kalke (Harte Research Institute, Texas A&M University-Corpus Christi) for their participation as Chief Scientists on the R/V Ocean Veritas and Gyre cruises respectively. Also, many people from the Harte Research Institute/Texas A&M participated in the collection and analysis of these samples: Sandra Arismendez and Rick Kalke collected sediment samples on the R/V Gyre cruise; Chien-Yi Hsiang, David Franklin, Elani K. Morgan, Robert Gutierrez, and Travis Washburn washed, sorted, and counted macrofauna samples; Rick Kalke, Adelaide Rhodes, Larry Hyde, and Michael Reuscher performed taxonomic identifications; and Carrol Simanek and Leslie Adams helped to digitize and proof-read the data base. Funds for the analysis and reporting of these samples were provided through the NOAA, National Ocean Service, Office of Response and Restoration.



**Fig. 3.** Spatial comparison of different ranges (high, intermediate, and low) of macrofaunal taxa richness in relation to the DWH wellhead. Concentric rings are 25 km apart.



**Fig. 4.** Spatial comparison of different ranges (high, intermediate, and low) of meiofaunal taxa richness in relation to the DWH wellhead. Concentric rings are 25 km apart.



**Fig. 5.** Spatial comparison of different ranges (high, intermediate, and low) of meiofaunal nematode/harpacticoid ratios in relation to the DWH wellhead. Concentric rings are 25 km apart.



**Fig. 6.** The ratio of nematode to harpacticoid copepod abundance in relation to distance from the wellhead (km). Ratios increase notably at distances < about 10 km from the DWH wellhead.



**Fig. 7.** Spatial comparison of different ranges (high, intermediate, and low) of sediment TPH in relation to the DWH wellhead. Concentric rings are 25 km apart. TPH range =  $0 - 5,023,004 \ \mu g/kg$ ; 50<sup>th</sup> percentile = 56,296  $\mu g/kg$ ; 75th percentile = 181,879  $\mu g/kg$ .



**Fig. 8.** Spatial comparison of different ranges (high, intermediate, and low) of sediment barium levels in relation to the DWH wellhead. Concentric rings are 25 km apart. Barium range =  $126 - 12,700 \ \mu g/g$ ;  $50^{\text{th}}$  percentile =  $455 \ \mu g/g$ ;  $75^{\text{th}}$  percentile =  $825 \ \mu g/g$ .

| Station   | Dominant     | # of               | # Taxa per          |            | Н    | ['    | Density m <sup>-2</sup> |       |
|-----------|--------------|--------------------|---------------------|------------|------|-------|-------------------------|-------|
|           | Taxa         | Cores <sup>1</sup> | Stat                | ion        |      |       |                         |       |
|           |              |                    | Mean                | STD        | Mean | STD   | Mean                    | STD   |
| 1.02      | Cirratulidae | 3                  | 31.3                | 6.7        | 3.01 | 0.23  | 14,600                  | 4,555 |
|           | Spionidae    |                    |                     |            |      |       |                         |       |
| 2.21      | Paraonidae   | 3                  | 25.7                | 6.0        | 2.74 | 0.28  | 16,776                  | 9,808 |
|           | Cirratulidae |                    |                     |            |      |       |                         |       |
| 2.27      | Cossuridae   | 3                  | 11.0                | 1.0        | 1.83 | 0.07  | 12,717                  | 1,888 |
| 2.21      | Spionidae    | 2                  | <b>2</b> 0 <b>-</b> |            | 2 20 | 0.1.6 | 11 600                  |       |
| 3.31      | Spionidae    | 3                  | 38.7                | 4.2        | 3.30 | 0.16  | 11,692                  | 527   |
| 2.22      | Podocopida   | 2                  | 267                 | - <b>-</b> | 2.04 | 0.15  | 12 512                  | 0 070 |
| 3.32      | Spionidae    | 3                  | 26.7                | 5.7        | 2.94 | 0.15  | 13,513                  | 8,273 |
| 1 1 1     | Aplacophora  | 2                  | 217                 | 55         | 2.00 | 0.22  | 12 021                  | 2 025 |
| 4.44      | Cirrotulidoo | 3                  | 51.7                | 5.5        | 5.00 | 0.22  | 15,951                  | 2,823 |
| 1 15      | Aplacophora  | 2                  | 38 5                | 02         | 3 18 | 0.30  | 16 120                  | 2 044 |
| 4.45      | Podocopida   | 2                  | 50.5                | ).2        | 5.10 | 0.57  | 10,127                  | 2,044 |
| AI TEE012 | Maldanidae   | 3                  | 237                 | 29         | 2 61 | 0 14  | 9 580                   | 1 888 |
| 712111012 | Capitellidae | 5                  | 23.1                | 2.7        | 2.01 | 0.14  | ),500                   | 1,000 |
| ALTNF001  | Dorvilleidae | 3                  | 8.7                 | 2.1        | 1.63 | 0.25  | 3.514                   | 1.197 |
|           | Paraonidae   | U                  | 017                 |            | 1100 | 0.20  | 0,01                    | -,->, |
| ALTNF015  | Maldanidae   | 3                  | 23.0                | 1.0        | 2.62 | 0.20  | 11,798                  | 1,479 |
|           | Dorvilleidae |                    |                     |            |      |       | ,                       | ,     |
| D002S     | Spionidae    | 3                  | 12.7                | 2.5        | 2.32 | 0.22  | 2,931                   | 313   |
|           | Paraonidae   |                    |                     |            |      |       |                         |       |
| D007S     | Spionidae    | 3                  | 17.7                | 4.0        | 2.65 | 0.23  | 3,765                   | 1,328 |
|           | Acrocirridae |                    |                     |            |      |       |                         |       |
| D008S     | Spionidae    | 3                  | 18.7                | 1.5        | 2.80 | 0.06  | 3,682                   | 507   |
|           | Acrocirridae | _                  |                     |            |      |       |                         |       |
| D010S     | Spionidae    | 3                  | 23.3                | 2.5        | 2.87 | 0.08  | 5,983                   | 1,006 |
| D0100     | Maldanidae   | 2                  | 24.2                | 2.5        | 2.02 | 0.10  | 7 (1)                   | 017   |
| D0128     | Spionidae    | 3                  | 24.3                | 3.5        | 2.83 | 0.13  | 7,614                   | 817   |
| D0128     | Maldanidae   | 2                  | 14.0                | 60         | 2 20 | 0.56  | 2 002                   | 050   |
| D0155     | Nomertee     | 3                  | 14.0                | 0.2        | 2.38 | 0.30  | 2,805                   | 939   |
| D014S     | Maldanidae   | 3                  | 187                 | 3 1        | 2 40 | 0.20  | 8 367                   | 767   |
| D0145     | Dorvilleidae | 5                  | 10.7                | 5.1        | 2.40 | 0.20  | 0,507                   | /0/   |
| D015S     | Capitellidae | 3                  | 183                 | 38         | 2.56 | 0.29  | 5 690                   | 3 605 |
| 20125     | Bivalvia     | 5                  | 10.5                | 5.0        | 2.30 | 0.27  | 5,070                   | 5,005 |
| D017S     | Maldanidae   | 3                  | 19.7                | 7.5        | 2.42 | 0.52  | 6,903                   | 2,843 |
|           | Spionidae    |                    |                     | . –        |      | -     | ,                       | , -   |
| D019S     | Bivalvia     | 3                  | 25.7                | 4.9        | 2.82 | 0.15  | 9,413                   | 2,837 |
|           | Paraonidae   |                    |                     |            |      |       |                         |       |

Table 1. Key macrofaunal variables by station. Dominant taxa = two most abundant at astation. H' calculated with natural logarithms. STD = standard deviations.

| Station  | Dominant     | # of # Taxa per |              | a per | Н       | ['   | Density m <sup>-2</sup>                 |       |
|----------|--------------|-----------------|--------------|-------|---------|------|-----------------------------------------|-------|
|          | Taxa         | Cores           | Stat         | ion   | N       | CUD  | N                                       | CTD   |
|          | ~            |                 | Mean         | SID   | Mean    | SID  | Mean                                    | SID   |
| D021S    | Capitellidae | 3               | 26.7         | 5.8   | 2.84    | 0.20 | 9,915                                   | 1,327 |
| D0240    | Maldanidae   | 2               | <b>2</b> 2 0 | 1 7   | 2.04    | 0.15 | 0.000                                   | 705   |
| D024S    | Maldanidae   | 3               | 23.0         | 1./   | 2.84    | 0.15 | 8,200                                   | 135   |
| D0210    | Capitellidae | 2               | 0.0          | 0.0   | 1 40    | 0.00 | 1 225                                   | 102   |
| D0315    | Dorvilleidae | 3               | 9.0          | 0.0   | 1.48    | 0.08 | 4,225                                   | 192   |
| D034S    | Paraonidae   | 3               | 77           | 15    | 1.82    | 0.16 | 1 066                                   | 381   |
| D0343    | Maldanidae   | 5               | 1.1          | 1.5   | 1.02    | 0.10 | 1,900                                   | 504   |
| D038SW   | Dorvilleidae | 3               | 87           | 0.6   | 0.86    | 0.15 | 8 534                                   | 1 274 |
| D0505 (( | Capitellidae | 5               | 0.7          | 0.0   | 0.00    | 0.15 | 0,554                                   | 1,274 |
| D040S    | Dorvilleidae | 3               | 4.3          | 2.5   | 0.93    | 0.62 | 2.259                                   | 1.087 |
| 20.00    | Paraonidae   | U               |              |       | 0.70    | 0.02 | _,                                      | 1,007 |
| D042S    | Dorvilleidae | 3               | 13.7         | 2.3   | 2.12    | 0.50 | 7.154                                   | 2.752 |
|          | Paraonidae   |                 |              |       |         |      | - , -                                   | ,     |
| D043S    | Spionidae    | 2               | 25.5         | 6.4   | 2.72    | 0.24 | 10,730                                  | 2,219 |
|          | Paraonidae   |                 |              |       |         |      |                                         |       |
| D044S    | Dorvilleidae | 3               | 18.0         | 3.0   | 2.41    | 0.16 | 10,710                                  | 2,807 |
|          | Paraonidae   |                 |              |       |         |      |                                         |       |
| D050S    | Paraonidae   | 3               | 22.0         | 2.7   | 2.69    | 0.12 | 10,796                                  | 2,326 |
|          | Maldanidae   |                 |              |       |         |      |                                         |       |
| D057S    | Dorvilleidae | 3               | 20.7         | 4.0   | 2.43    | 0.16 | 10,249                                  | 2,362 |
|          | Paraonidae   | 2               | ~~ ~         | ~ -   | • • • • | 0.10 |                                         | •     |
| D062S    | Paraonidae   | 3               | 22.7         | 2.5   | 2.81    | 0.10 | 7,530                                   | 2,803 |
| D0040    | Maldanidae   | 2               | 27.5         | 2.1   | 2.07    | 0.01 | 0.700                                   | 1 077 |
| D0845    | Aplacophora  | Z               | 27.5         | 2.1   | 2.87    | 0.01 | 9,798                                   | 1,077 |
| D085S    | Gastropoda   | 3               | 30.0         | 27    | 2 0/    | 0.00 | 1/1 851                                 | 2 102 |
| D0055    | Myodocopida  | 5               | 50.0         | 2.1   | 2.74    | 0.07 | 17,001                                  | 2,772 |
| D094S    | Spionidae    | 3               | 25.0         | 3.6   | 2.95    | 0.20 | 7.907                                   | 1.322 |
|          | Capitellidae | 5               | 20.0         | 2.0   | 2.70    | 0.20 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1,522 |
| FF003    | Cossuridae   | 3               | 26.3         | 3.2   | 2.59    | 0.23 | 21,084                                  | 6,072 |
|          | Spionidae    |                 |              |       |         |      | ,                                       | ,     |
| FF005    | Cirratulidae | 3               | 27.7         | 8.3   | 2.84    | 0.25 | 12,468                                  | 4,154 |
|          | Aplacophora  |                 |              |       |         |      |                                         |       |
| FF010    | Paraonidae   | 3               | 26.0         | 1.7   | 2.74    | 0.10 | 12,853                                  | 959   |
|          | Maldanidae   |                 |              |       |         |      |                                         |       |
| FF013    | Spionidae    | 3               | 24.3         | 4.7   | 2.83    | 0.28 | 7,195                                   | 2,250 |
|          | Capitellidae | _               |              | _     |         |      |                                         |       |
| FFC1     | Spionidae    | 3               | 21.3         | 0.6   | 2.77    | 0.10 | 5,899                                   | 784   |
|          | Paraonidae   | 2               | 10 7         | 4.0   | 0.60    | 0.10 | 1700                                    | 007   |
| FFC4     | Spionidae    | 3               | 19.7         | 4.0   | 2.63    | 0.19 | 4,/69                                   | 996   |
| EEC7     | Paraonidae   | 2               | 107          | 50    | 2.52    | 0.41 | 1 102                                   | 1.045 |
| FFC/     | Spionidae    | 3               | 18./         | 5.0   | 2.52    | 0.41 | 4,183                                   | 1,045 |

| Station       | Dominant               | # of  | # Tax        | a per | Н    | ['   | Density m <sup>-2</sup> |         |
|---------------|------------------------|-------|--------------|-------|------|------|-------------------------|---------|
|               | Taxa                   | Cores | Stat         | ion   |      |      |                         |         |
|               |                        |       | Mean         | STD   | Mean | STD  | Mean                    | STD     |
|               | Syllidae               |       |              |       |      |      |                         |         |
| FFMT1         | Ampeliscidae           | 1     | 11.0         |       | 2.08 | •    | 3,263                   | •       |
|               | Paraonidae             |       |              |       |      |      |                         |         |
| FFMT2         | Paraonidae             | 3     | 32.0         | 5.0   | 2.95 | 0.30 | 13,139                  | 4,513   |
|               | Spionidae              |       |              |       |      |      |                         |         |
| FFMT3         | Spionidae              | 3     | 27.3         | 3.5   | 2.96 | 0.04 | 7,656                   | 1,602   |
|               | Opheliidae             | 2     |              |       |      | 0.15 | 4.40.4                  |         |
| FFMT4         | Spionidae              | 3     | 14.7         | 2.1   | 2.31 | 0.15 | 4,184                   | 441     |
|               | Paraonidae             | 2     | 0.0          | 1.0   | 2.02 | 0.10 | 1 1 7 0                 | 70      |
| FFM15         | Spionidae              | 3     | 8.0          | 1.0   | 2.03 | 0.18 | 1,172                   | 12      |
|               | Bivalvia               | 2     | 0.0          | 27    | 2.00 | 0.26 | 1 201                   | 126     |
| FFMID         | Bivalvia<br>Demonsidae | 3     | 9.0          | 2.1   | 2.09 | 0.36 | 1,381                   | 126     |
| I DNI 1       | Domuilloideo           | 2     | 127          | 2.5   | 1 96 | 0.19 | 8 660                   | 1 072   |
| LDINLI        | Conitollidoo           | 3     | 15.7         | 2.3   | 1.00 | 0.10 | 8,000                   | 1,972   |
| I DNI 11      | Maldanidaa             | 2     | 28.0         | 1 1   | 2 00 | 0.13 | 10 202                  | 1 744   |
| LDINLII       | Spionidae              | 5     | 28.0         | 4.4   | 2.90 | 0.15 | 10,292                  | 1,/44   |
| I BNI 13      | Paraonidae             | 2     | 25.0         | 14    | 2.81 | 0.05 | 12 805                  | 5 320   |
| LDIALIS       | Capitellidae           | 2     | 23.0         | 1.7   | 2.01 | 0.05 | 12,005                  | 5,520   |
| LBNI 14       | Paraonidae             | 2     | 26.5         | 64    | 2 72 | 0.30 | 13 868                  | 1 686   |
| EDITEIT       | Dorvilleidae           | 2     | 20.5         | 0.1   | 2.12 | 0.50 | 15,000                  | 1,000   |
| LBNL17        | Maldanidae             | 3     | 31.7         | 3.1   | 2.85 | 0.14 | 15.228                  | 1.815   |
|               | Paraonidae             | C     | 0111         | 011   | 2100 |      | 10,220                  | 1,010   |
| LBNL3         | Maldanidae             | 3     | 13.7         | 3.2   | 2.20 | 0.18 | 6.401                   | 2.999   |
|               | Paraonidae             |       |              |       |      |      | ,                       | ,       |
| LBNL4         | Maldanidae             | 3     | 25.0         | 8.2   | 2.74 | 0.36 | 11,086                  | 4,387   |
|               | Spionidae              |       |              |       |      |      | ,                       |         |
| LBNL5         | Dorvilleidae           | 3     | 24.7         | 1.2   | 2.80 | 0.07 | 11,588                  | 1,946   |
|               | Paraonidae             |       |              |       |      |      |                         |         |
| LBNL7         | Dorvilleidae           | 3     | 21.7         | 0.6   | 2.61 | 0.21 | 8,618                   | 2,160   |
|               | Capitellidae           |       |              |       |      |      |                         |         |
| LBNL8         | Maldanidae             | 3     | 24.0         | 3.6   | 2.67 | 0.13 | 9,329                   | 817     |
|               | Capitellidae           |       |              |       |      |      |                         |         |
| LBNL9         | Aplacophora            | 2     | 15.5         | 9.2   | 2.17 | 0.56 | 7,848                   | 4,177   |
|               | Dorvilleidae           |       |              |       |      |      |                         |         |
| M011S         | Cirratulidae           | 3     | 19.3         | 6.7   | 2.31 | 0.26 | 16,315                  | 3,986   |
|               | Lumbrineridae          |       | ~ -          | •     |      |      |                         |         |
| NF006MOD      | Dorvilleidae           | 3     | 9.7          | 2.9   | 1.66 | 0.53 | 3,765                   | 664     |
| <b>NT</b> OOO | Paraonidae             | 2     | <b>0</b> 0 0 | ~ ~   | 0.77 | 0.07 | 0.277                   | 1 0 4 4 |
| NF008         | Maldanidae             | 3     | 20.0         | 2.7   | 2.55 | 0.07 | 8,367                   | 1,341   |
| NEOOO         | Capitellidae           | 2     | 20.0         | 27    | 257  | 0.15 | 7 720                   | 1 1 2 5 |
| INF009        | Conitollidae           | 3     | 20.0         | 2.1   | 2.37 | 0.15 | 1,139                   | 1,125   |
|               | Capiteindae            |       |              |       |      |      |                         |         |

| Station | Dominant<br>Taxa           | # of<br>Cores <sup>1</sup> | # Tax<br>Stat | # Taxa per<br>Station |      | ['   | Density m <sup>-2</sup> |       |
|---------|----------------------------|----------------------------|---------------|-----------------------|------|------|-------------------------|-------|
|         |                            |                            | Mean          | STD                   | Mean | STD  | Mean                    | STD   |
| NF010   | Maldanidae<br>Paraonidae   | 3                          | 23.0          | 4.6                   | 2.78 | 0.23 | 10,376                  | 1,811 |
| NF011   | Maldanidae<br>Paraonidae   | 3                          | 22.3          | 5.7                   | 2.71 | 0.29 | 11,839                  | 4,422 |
| NF012   | Maldanidae<br>Paraonidae   | 3                          | 24.3          | 3.8                   | 2.77 | 0.26 | 11,295                  | 1,660 |
| NF013   | Maldanidae<br>Capitellidae | 3                          | 19.0          | 1.0                   | 2.52 | 0.13 | 7,781                   | 2,141 |
| NF014   | Maldanidae<br>Capitellidae | 3                          | 23.0          | 3.6                   | 2.76 | 0.12 | 10,041                  | 2,424 |

<sup>1</sup>Note: At eight stations, the multi-corer did not obtain a sufficient number of acceptable cores to meet sampling requirements of all variables. In these cases, 1 - 2 of the 3 replicate cores intended for macrofaunal analysis were used to provide sediment needed for other required variables.

Table 2. Key meiofaunal variables by station (1 core per station). Dominant taxa = two most abundant at a station; H' calculated with natural logarithms; N/H = nematode/harpacticoid ratio. Note: There are no meiofauna data for Stations ALTFF012 and D013S.

| Station  | Dominant<br>Taxa           | # of<br>Taxa | Η'   |              | -2        | N/H           |      |
|----------|----------------------------|--------------|------|--------------|-----------|---------------|------|
|          |                            |              |      | All<br>Fauna | Nematodes | Harpacticoids |      |
| 1.02     | Nematodes<br>Harpacticoids | 10           | 0.77 | 909565       | 714267    | 114906        | 6.2  |
| 2.21     | Nematodes<br>Harpacticoids | 13           | 0.38 | 6625808      | 6095474   | 241597        | 25.2 |
| 2.27     | Nematodes<br>Nauplii       | 10           | 0.65 | 4820989      | 4085676   | 225182        | 18.1 |
| 3.31     | Nematodes<br>Harpacticoids | 9            | 0.96 | 2300639      | 1523237   | 438999        | 3.5  |
| 3.32     | Nematodes<br>Harpacticoids | 9            | 0.83 | 824122       | 612410    | 142264        | 4.3  |
| 4.44     | Nematodes<br>Harpacticoids | 8            | 0.85 | 1428114      | 1041307   | 211713        | 4.9  |
| 4.45     | Nematodes<br>Harpacticoids | 13           | 0.43 | 2362512      | 2142381   | 128795        | 16.6 |
| ALTNF001 | Nematodes<br>Harpacticoids | 6            | 0.10 | 4049058      | 3984660   | 45457         | 87.7 |
| ALTNF015 | Nematodes;<br>Nauplii      | 9            | 0.63 | 1883107      | 1562802   | 118694        | 13.2 |
| D002S    | Nematodes<br>Harpacticoids | 9            | 0.80 | 366183       | 282003    | 39144         | 7.2  |
| D007S    | Nematodes<br>Nauplii       | 8            | 0.79 | 590102       | 457097    | 58084         | 7.9  |
| D008S    | Nematodes<br>Nauplii       | 11           | 1.00 | 485298       | 330827    | 66502         | 5    |
| D010S    | Nematodes<br>Nauplii       | 10           | 0.73 | 1485356      | 1185675   | 100174        | 11.8 |
| D012S    | Nematodes<br>Nauplii       | 10           | 0.86 | 1598578      | 1176416   | 151945        | 7.7  |
| D014S    | Nematodes<br>Nauplii       | 8            | 0.86 | 1186096      | 876735    | 117010        | 7.5  |
| D015S    | Nematodes<br>Harpacticoids | 10           | 0.68 | 772772       | 626720    | 80392         | 7.8  |
| D017S    | Nematodes<br>Nauplii       | 8            | 0.76 | 822439       | 648186    | 63135         | 10.3 |

| Station | Dominant<br>Taxa | # of<br>Taxa | Η'   |              | -2        | N/H           |      |
|---------|------------------|--------------|------|--------------|-----------|---------------|------|
|         |                  |              |      | All<br>Fauna | Nematodes | Harpacticoids |      |
| D019S   | Nematodes        | 9            | 0.83 | 1511031      | 1130537   | 174253        | 6.5  |
|         | Harpacticoids    |              |      |              |           |               |      |
| D021S   | Nematodes        | 9            | 0.78 | 1763150      | 1346880   | 188142        | 7.2  |
|         | Nauplii          |              |      |              |           |               |      |
| D024S   | Nematodes        | 11           | 0.78 | 1476096      | 1135167   | 141422        | 8    |
|         | Nauplii          |              |      |              |           |               |      |
| D031S   | Nematodes        | 6            | 0.14 | 1711379      | 1667185   | 30726         | 54.3 |
|         | Harpacticoids    |              |      |              |           |               |      |
| D034S   | Nematodes        | 6            | 0.76 | 204137       | 160784    | 21887         | 7.3  |
|         | Harpacticoids    |              |      |              |           |               |      |
| D038SW  | Nematodes        | 4            | 0.16 | 859478       | 833382    | 18941         | 44   |
|         | Harpacticoids    |              |      |              |           |               |      |
| D040S   | Nematodes        | 5            | 0.12 | 2237084      | 2189101   | 32830         | 66.7 |
|         | Harpacticoids    |              |      |              |           |               |      |
| D042S   | Nematodes        | 4            | 0.28 | 2638622      | 2478259   | 96386         | 25.7 |
|         | Harpacticoids    |              |      |              |           |               |      |
| D043S   | Nematodes        | 11           | 0.72 | 2321264      | 1853644   | 156154        | 11.9 |
|         | Nauplii          |              |      |              |           |               |      |
| D044S   | Nematodes        | 8            | 0.59 | 1760625      | 1478622   | 133004        | 11.1 |
|         | Nauplii          |              |      |              |           |               |      |
| D050S   | Nematodes        | 10           | 0.31 | 6658217      | 6216693   | 254224        | 24.5 |
|         | Harpacticoids    |              |      |              |           |               |      |
| D057S   | Nematodes        | 8            | 0.34 | 3868913      | 3569232   | 188984        | 18.9 |
|         | Harpacticoids    |              |      |              |           |               |      |
| D062S   | Nematodes        | 9            | 0.64 | 1276169      | 1066982   | 112380        | 9.5  |
|         | Harpacticoids    |              |      |              |           |               |      |
| D084S   | Nematodes        | 12           | 0.75 | 2365458      | 1869638   | 216764        | 8.6  |
|         | Nauplii          |              |      |              |           |               |      |
| D085S   | Nematodes        | 10           | 0.58 | 2282962      | 1952555   | 144790        | 13.5 |
|         | Harpacticoids    |              |      |              |           |               |      |
| D094S   | Nematodes        | 11           | 0.80 | 848114       | 652395    | 66923         | 9.7  |
|         | Nauplii          |              |      |              |           |               |      |
| FF003   | Nematodes        | 12           | 0.90 | 3627316      | 2662193   | 436052        | 6.1  |
|         | Harpacticoids    |              |      |              |           |               |      |
| FF005   | Nematodes        | 12           | 0.59 | 2246764      | 1913411   | 133425        | 14.3 |
|         | Nauplii          | _            |      |              |           |               |      |
| FF010   | Nematodes        | 8            | 0.40 | 2277069      | 2070407   | 100595        | 20.6 |
|         | Harpacticoids    |              | 0.50 |              | 10005 :-  |               |      |
| FF013   | Nematodes        | 11           | 0.59 | 2254340      | 1930247   | 133425        | 14.5 |
|         | Nauplii          |              |      |              |           |               |      |

| Station   | Dominant<br>Taxa | # of<br>Taxa | Η'   |              | -2        | N/H           |       |
|-----------|------------------|--------------|------|--------------|-----------|---------------|-------|
|           |                  |              |      | All<br>Fauna | Nematodes | Harpacticoids |       |
| FFC1      | Nematodes        | 9            | 0.69 | 3050262      | 2522875   | 128375        | 19.7  |
|           | Nauplii          |              |      |              |           |               |       |
| FFC4      | Nematodes        | 7            | 0.73 | 637243       | 508447    | 48404         | 10.5  |
|           | Nauplii          |              |      |              |           |               |       |
| FFC7      | Nematodes        | 11           | 0.94 | 905356       | 641031    | 85864         | 7.5   |
|           | Nauplii          |              |      |              |           |               |       |
| FFMT1     | Nematodes        | 6            | 0.60 | 356923       | 306836    | 14311         | 21.4  |
|           | Nauplii          |              |      |              |           |               |       |
| FFMT2     | Nematodes        | 9            | 0.49 | 3507360      | 3107084   | 155312        | 20    |
|           | Nauplii          |              |      |              |           |               |       |
| FFMT3     | Nematodes        | 11           | 0.70 | 1575850      | 1293005   | 102700        | 12.6  |
|           | Nauplii          | _            |      |              |           |               |       |
| FFMT4     | Nematodes        | 9            | 0.59 | 719318       | 617460    | 32409         | 19.1  |
|           | Nauplii          | _            |      |              |           |               |       |
| FFMT5     | Nematodes        | 7            | 0.96 | 345980       | 227707    | 40827         | 5.6   |
|           | Nauplii          | -            | 0.5  |              |           | 12000         | 10.0  |
| FFMT6     | Nematodes        | 6            | 0.67 | 220131       | 177199    | 13890         | 12.8  |
|           | Nauplii          | 6            | 0.11 | 0654067      | 0504705   | 71550         | 110.0 |
| LBNLI     | Nematodes        | 6            | 0.11 | 8654967      | 8504705   | 71553         | 118.9 |
| I DNU 11  | Harpacticoids    | 10           | 0.00 | 040001       | 507(70)   | 120700        | 4.0   |
| LBNLII    | Nematodes        | 10           | 0.89 | 842221       | 59/6/8    | 120798        | 4.9   |
| I DNII 12 | Harpacticoids    | 11           | 0.02 | 0107020      | 155(000   | 219/21        | 4.0   |
| LBNL13    | Nematodes        | 11           | 0.93 | 218/838      | 1556909   | 318621        | 4.9   |
| I DNII 14 | Harpacticolds    | 11           | 0.55 | 2001222      | 2225052   | 20///22       | 16.1  |
| LBNL14    | Nematodes        | 11           | 0.55 | 3901322      | 3323932   | 206662        | 10.1  |
| I DNI 17  | Naupin           | 0            | 0.59 | 2207446      | 2014007   | 116500        | 17.2  |
| LDINL1/   | Neuralii         | 0            | 0.38 | 2397440      | 2014007   | 110389        | 17.5  |
| I DNI 2   | Namatodas        | 10           | 0.31 | 3460058      | 3244207   | 103121        | 21.5  |
| LDINLS    | Harpacticoida    | 10           | 0.51 | 3409038      | 3244297   | 103121        | 51.5  |
| I BNI 4   | Nematodes        | 8            | 1.01 | 281/137      | 1610784   | 370144        | 10    |
| LDINL4    | Naunlii          | 0            | 1.01 | 2014137      | 1010784   | 529144        | 4.9   |
| L BNL 5   | Nematodes        | 8            | 0.30 | 2932831      | 2754791   | 74078         | 37.2  |
| LDI(L)    | Harnacticoid     | 0            | 0.50 | 2752051      | 2134771   | 74070         | 51.2  |
| I BNL7    | Nematodes        | 8            | 0.47 | 2890320      | 2562439   | 144790        | 177   |
|           | Naunlii          | 0            | 0.17 | 2070320      | 2302137   | 111790        | 17.7  |
| LBNL8     | Nematodes        | 11           | 0.75 | 3258187      | 2526663   | 334616        | 76    |
|           | Nauplii          |              | 5.75 | 220101       |           | 221010        | ,     |
| LBNL9     | Nematodes        | 7            | 1.25 | 2760683      | 1250494   | 499187        | 2.5   |
|           | Nauplii          |              | 1.20 | 2.00000      |           |               |       |
|           |                  |              |      |              |           |               |       |

| Station  | Dominant<br>Taxa | # of<br>Taxa | Η'   |              | Density m <sup>-2</sup> |               |      |  |  |  |
|----------|------------------|--------------|------|--------------|-------------------------|---------------|------|--|--|--|
|          |                  |              |      | All<br>Fauna | Nematodes               | Harpacticoids |      |  |  |  |
| M011S    | Nematodes        | 13           | 0.55 | 4581917      | 3956881                 | 281582        | 14.1 |  |  |  |
|          | Harpacticoids    |              |      |              |                         |               |      |  |  |  |
| NF006MOD | Nematodes        | 7            | 0.09 | 3246402      | 3197998                 | 24412         | 131  |  |  |  |
|          | Harpacticoids    |              |      |              |                         |               |      |  |  |  |
| NF008    | Nematodes        | 9            | 0.32 | 4699349      | 4375676                 | 123324        | 35.5 |  |  |  |
|          | Nauplii          |              |      |              |                         |               |      |  |  |  |
| NF009    | Nematodes        | 6            | 0.30 | 4363049      | 4088202                 | 153208        | 26.7 |  |  |  |
|          | Harpacticoids    |              |      |              |                         |               |      |  |  |  |
| NF010    | Nematodes        | 11           | 0.23 | 4778478      | 4569711                 | 118273        | 38.6 |  |  |  |
|          | Harpacticoids    |              |      |              |                         |               |      |  |  |  |
| NF011    | Nematodes        | 9            | 0.20 | 4395880      | 4229203                 | 82917         | 51   |  |  |  |
|          | Harpacticoids    |              |      |              |                         |               |      |  |  |  |
| NF012    | Nematodes        | 9            | 0.18 | 4975880      | 4816780                 | 83759         | 57.5 |  |  |  |
|          | Harpacticoids    |              |      |              |                         |               |      |  |  |  |
| NF013    | Nematodes        | 10           | 0.52 | 2337258      | 2048941                 | 118694        | 17.3 |  |  |  |
|          | Nauplii          |              |      |              |                         |               |      |  |  |  |
| NF014    | Nematodes        | 10           | 0.63 | 2579275      | 2161322                 | 167097        | 12.9 |  |  |  |
|          | Nauplii          |              |      |              |                         |               |      |  |  |  |

Table 3. Key abiotic variables by station. Total PAH = total polynuclear aromatic hydrocarbons, TPH = total petroleum hydrocarbons, TOC = total organic carbon. Data for Total PAH, TPH, % silt-clay, TOC, and metals were downloaded from the ERMA Gulf Response website (<<u>http://gomex.erma.noaa.gov</u>>). NA = not available.

| Station  | Latitude  | Longitude  | Depth        | Dist.<br>Well | Dist.<br>Seep | Total<br>PAH | TPH            | Silt-<br>Clay | TOC    | Ba    | Cr    | Pb    | Zn    |
|----------|-----------|------------|--------------|---------------|---------------|--------------|----------------|---------------|--------|-------|-------|-------|-------|
|          | (deg. N)  | (deg. w)   | ( <b>m</b> ) | ( <b>km</b> ) | (km)          | (ppb)        | ( <b>pp</b> b) | (%)           | (ppm)  | (ppm) | (ppm) | (ppm) | (ppm) |
| 1.02     | 28.740044 | -88.570589 | 1129         | 20.0          | 1.22          | NA           | 0              | 97.7          | 18,700 | 729   | 44.2  | 36.2  | 107   |
| 2.21     | 28.784596 | -88.453714 | 1367         | 10.0          | 4.76          | NA           | 0              | 97.6          | 9,670  | 284   | 35.9  | 32.3  | 84.6  |
| 2.27     | 29.015963 | -88.893449 | 76           | 60.1          | 14.5          | NA           | 67,000         | 98.4          | 15,100 | 194   | 36.4  | 32.8  | 96.2  |
| 3.31     | 28.823065 | -88.400480 | 976          | 10.0          | 0.43          | NA           | 34,000         | 90.2          | 15,900 | 323   | 28.6  | 31.7  | 66.8  |
| 3.32     | 28.913845 | -88.437757 | 854          | 20.7          | 4.73          | NA           | 0              | 97.2          | 19,600 | 482   | 35.9  | 34.6  | 80.8  |
| 4.44     | 28.828141 | -88.359791 | 755          | 10.0          | 1.15          | NA           | 71,000         | 95.4          | 27,400 | 710   | 34.9  | 44    | 91.5  |
| 4.45     | 28.918182 | -88.353596 | 755          | 20.0          | 1.60          | NA           | 65,000         | 97.1          | 29,400 | 420   | 38.2  | 27.5  | 94.9  |
| ALTFF012 | 28.297308 | -88.636311 | 1738         | 55.7          | 8.82          | 67.5         | 8,168          | 96.1          | 15,200 | 1,700 | 38.9  | 24.9  | 100   |
| ALTNF001 | 28.734789 | -88.370533 | 1543         | 0.58          | 3.95          | 46,714       | 9,190,621      | 97.4          | 11,000 | 6,680 | 30    | 34.9  | 76.3  |
| ALTNF015 | 28.709925 | -88.366436 | 1607         | 3.13          | 2.40          | 13,676       | 1,959,533      | 96.7          | 14,500 | 985   | 41.5  | 36.1  | 99.7  |
| D002S    | 28.557089 | -87.760689 | 2389         | 62.6          | 13.7          | 51.2         | 25,985         | 97.2          | 12,800 | 255   | 35.9  | 18.3  | 85.5  |
| D007S    | 28.086583 | -88.516989 | 2052         | 73.9          | 16.0          | 78.5         | 10233.24       | 94.2          | 18,600 | 165   | 11.6  | 31.7  | 26.8  |
| D008S    | 27.887417 | -88.626806 | 1606         | 97.9          | 9.11          | 82.5         | 5,472          | 93.5          | 19,200 | 571   | 36.2  | 37    | 89    |
| D010S    | 28.570086 | -88.323350 | 1884         | 19.1          | 8.42          | 208          | 30,508         | 97.2          | 19,100 | 626   | 29.3  | 24.2  | 70.5  |
| D012S    | 28.672442 | -88.233931 | 1819         | 14.9          | 1.50          | 114          | 14,470         | 96.9          | 18,700 | 440   | 31.6  | 24.3  | 76.5  |
| D013S    | 27.654381 | -88.637922 | 1766         | 123           | 11.8          | 346          | 2,797          | 74.4          | 17,700 | 275   | 23.4  | 20.9  | 56.3  |
| D014S    | 28.565414 | -88.448072 | 1760         | 20.8          | 5.57          | 83.4         | 10,598         | 98.5          | NA     | NA    | NA    | NA    | NA    |
| D015S    | 28.293817 | -88.460031 | 1576         | 50.2          | 5.32          | 91.7         | 8,967          | 97.6          | 21,800 | 905   | 37.2  | 26.2  | 93.5  |
| D017S    | 28.473367 | -88.478325 | 1712         | 31.4          | 6.00          | 126          | 16,263         | 96.4          | NA     | NA    | NA    | NA    | NA    |
| D019S    | 28.672706 | -88.368517 | 1656         | 7.27          | 2.39          | 222          | 46,647         | 97.9          | 13,200 | 395   | 38.3  | 26.5  | 94.4  |
| D021S    | 28.703044 | -88.360953 | 1618         | 3.93          | 1.50          | 291          | 59,731         | 98.1          | 8,300  | 1,270 | 39.9  | 21.3  | 87.4  |
| D024S    | 28.774570 | -88.167545 | 1697         | 19.8          | 1.11          | 221          | 47,070         | 98.3          | 18,100 | 357   | 32.1  | 25    | 81.2  |
| D031S    | 28.731703 | -88.358731 | 1508         | 1.01          | 2.76          | 31,880       | 3,667,840      | 93.2          | 4,970  | 6,550 | 42.4  | 24.5  | 95.3  |
| D034S    | 28.734822 | -88.362208 | 1544         | 0.52          | 3.22          | 912          | 898,052        | 98.4          | 10,300 | 3,350 | 42.2  | 25.9  | 102   |

| Station | Latitude<br>(deg. N) | Longitude<br>(deg. W) | Depth<br>(m) | Dist.<br>Well<br>(km) | Dist.<br>Seep<br>(km) | Total<br>PAH<br>(ppb) | TPH<br>(ppb) | Silt-<br>Clay<br>(%) | TOC<br>(ppm) | Ba<br>(ppm) | Cr<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) |
|---------|----------------------|-----------------------|--------------|-----------------------|-----------------------|-----------------------|--------------|----------------------|--------------|-------------|-------------|-------------|-------------|
| D038SW  | 28.740483            | -88.368058            | 1509         | 0.33                  | 4.04                  | 16,707                | 1,909,053    | 95.4                 | 7,440        | 2,860       | 37.1        | 16.9        | 92.1        |
| D040S   | 28.742303            | -88.362169            | 1517         | 0.59                  | 3.68                  | 47,559                | 5,023,004    | 92.4                 | 12,200       | 12,700      | 24.6        | 23.9        | 73.2        |
| D042S   | 28.742525            | -88.370500            | 1502         | 0.66                  | 4.36                  | 18,692                | 589,865      | 95.2                 | 15,900       | 1,890       | 35.8        | 19.2        | 144         |
| D043S   | 28.989167            | -87.934643            | 1492         | 50.6                  | 7.83                  | 49.5                  | 0            | 97.4                 | 0            | 380         | 32.4        | 19.9        | 78.8        |
| D044S   | 28.744919            | -88.374242            | 1493         | 1.11                  | 4.60                  | 11,809                | 1,358,119    | 98.5                 | 0            | 1,650       | 32.8        | 16.3        | 85.8        |
| D050S   | 28.792450            | -88.348483            | 1432         | 6.27                  | 0.59                  | 722                   | 113,190      | 97.9                 | 32,600       | 283         | 29.7        | 23.1        | 80.7        |
| D057S   | 28.549282            | -88.677556            | 1364         | 37.0                  | 1.81                  | NA                    | 28,000       | 98.4                 | 14,600       | 265         | 33.8        | 33.7        | 92.3        |
| D062S   | 28.265647            | -88.923322            | 1303         | 75.8                  | 3.07                  | 154                   | 21,813       | 98.9                 | 8,260        | 351         | 38.2        | 26.1        | 99.3        |
| D084S   | 28.841695            | -88.492019            | 931          | 16.9                  | 1.56                  | 325                   | 59,032       | 97.7                 | 18,200       | 535         | 30          | 25.2        | 77.7        |
| D085S   | 28.862904            | -88.534614            | 842          | 21.6                  | 2.87                  | 433                   | 53,691       | 98.1                 | 20,600       | 413         | 28          | 21.4        | 73.7        |
| D094S   | 29.335197            | -87.046351            | 668          | 145                   | 94.4                  | 38.8                  | 0            | 95.5                 | 28,000       | 184         | 27.5        | 23.5        | 60.3        |
| FF003   | 28.873950            | -88.756894            | 493          | 41.1                  | 0.57                  | 218                   | 40,088       | 98.6                 | 19,600       | 580         | 42          | 27.7        | 104         |
| FF005   | 28.807000            | -88.561000            | 1003         | 20.6                  | 4.46                  | 1,006                 | 168,874      | 98                   | 9,520        | 405         | 33.3        | 29.2        | 87.9        |
| FF010   | 28.668000            | -88.430000            | 1356         | 10.0                  | 2.46                  | 2,436                 | 334,903      | 98.2                 | 7,640        | 315         | 35.9        | 37.8        | 88          |
| FF013   | 28.204852            | -89.056013            | 1213         | 89.9                  | 5.46                  | NA                    | NA           | NA                   | NA           | NA          | NA          | NA          | NA          |
| FFC1    | 28.059642            | -90.249119            | 325          | 200                   | 5.72                  | NA                    | NA           | 98.6                 | 24,900       | 1,940       | 45.8        | 24.5        | 102         |
| FFC4    | 27.460422            | -89.779464            | 1456         | 199                   | 6.57                  | 91.8                  | 2,090        | 95.3                 | 26,200       | 468         | 34.6        | 20.4        | 74.6        |
| FFC7    | 27.733039            | -89.976969            | 1015         | 194                   | 0.47                  | 133                   | 6,758        | 95.5                 | 21,800       | 644         | 37.8        | 23.4        | 84.5        |
| FFMT1   | 28.539636            | -89.828800            | 211          | 145                   | 9.68                  | 218                   | 12,855       | 98.9                 | 9,590        | 440         | 43          | 35.6        | 111         |
| FFMT2   | 28.447919            | -89.671883            | 684          | 132                   | 3.12                  | 328                   | 64,524       | 92.4                 | 13,800       | 364         | 30.2        | 35.1        | 77.2        |
| FFMT3   | 28.218692            | -89.491714            | 1002         | 125                   | 6.68                  | 135                   | 11,090       | 99.2                 | 14,100       | 986         | 41.4        | 24.9        | 94.1        |
| FFMT4   | 27.828322            | -89.164775            | 1405         | 128                   | 0.77                  | 51.7                  | 0            | 95.3                 | 18,200       | 442         | 35.6        | 18          | 82.4        |
| FFMT5   | 27.336322            | -88.659344            | 2259         | 158                   | 10.8                  | 59.7                  | 0            | 97.5                 | 12,400       | 154         | 41.6        | 17.6        | 101         |
| FFMT6   | 26.999739            | -87.996706            | 2767         | 197                   | 51.2                  | 28.2                  | 0            | 69.4                 | 13,000       | 126         | 24.9        | 10.9        | 51.6        |
| LBNL1   | 28.732000            | -88.376800            | 1578         | 1.26                  | 4.42                  | 5,688                 | 2,108,199    | 97.2                 | 6,100        | 4,110       | 34.8        | 32          | 92.1        |
| LBNL11  | 28.345175            | -88.778517            | 1438         | 59.5                  | 0.36                  | 117                   | 10,583       | 99                   | 8,880        | 349         | 43.5        | 23          | 106         |
| LBNL13  | 28.447056            | -88.759342            | 1286         | 50.3                  | 5.61                  | NA                    | NA           | 99                   | 5,240        | 314         | 36.1        | 18.3        | 90.7        |
| LBNL14  | 28.730175            | -88.416986            | 1535         | 5.07                  | 3.22                  | 1,169                 | 180,496      | 98.3                 | 7,380        | 553         | 39.2        | 24          | 90.9        |

| Station  | Latitude<br>(deg. N) | Longitude<br>(deg. W) | Depth<br>(m) | Dist.<br>Well<br>(km) | Dist.<br>Seep<br>(km) | Total<br>PAH<br>(ppb) | TPH<br>(ppb) | Silt-<br>Clay<br>(%) | TOC<br>(ppm) | Ba<br>(ppm) | Cr<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) |
|----------|----------------------|-----------------------|--------------|-----------------------|-----------------------|-----------------------|--------------|----------------------|--------------|-------------|-------------|-------------|-------------|
| LBNL17   | 28.696767            | -88.384875            | 1595         | 4.96                  | 3.42                  | 273                   | 77,822       | 95.9                 | 11,800       | 395         | 38.2        | 32.5        | 92.2        |
| LBNL3    | 28.705231            | -88.401672            | 1585         | 5.06                  | 2.44                  | 389                   | 44,635       | 98                   | 13,700       | 702         | 47.6        | 24.1        | 101         |
| LBNL4    | 28.688081            | -88.418439            | 1422         | 7.57                  | 0.08                  | 849                   | 183,286      | 97.9                 | 9,830        | 439         | 38.6        | 25.6        | 90.5        |
| LBNL5    | 28.672508            | -88.435906            | 1350         | 10.0                  | 1.91                  | 2,057                 | 358,203      | 98.3                 | 12,600       | 394         | 39.8        | 36.7        | 103         |
| LBNL7    | 28.639167            | -88.471294            | 1577         | 15.1                  | 0.51                  | 376                   | 65,019       | 97.7                 | 11,700       | 863         | 40.1        | 37.9        | 97.6        |
| LBNL8    | 28.575208            | -88.537842            | 1578         | 24.7                  | 2.08                  | NA                    | NA           | 96.9                 | NA           | 405         | 37          | 20.3        | 85.9        |
| LBNL9    | 28.514144            | -88.600569            | 1516         | 33.9                  | 5.06                  | NA                    | NA           | 98.6                 | 5,810        | 317         | 36.1        | 23.4        | 89.1        |
| M011S    | 29.000375            | -88.800019            | 211          | 51.4                  | 6.97                  | 240                   | 59,184       | 98.8                 | 0            | 248         | 32.3        | 23.8        | 88.4        |
| NF006MOD | 28.745081            | -88.359400            | 1517         | 1.00                  | 3.34                  | 22,871                | 3,095,416    | 94.1                 | 11,300       | 789         | 34.1        | 37.3        | 87.5        |
| NF008    | 28.720005            | -88.388440            | 1585         | 2.98                  | 4.50                  | 419                   | 102,545      | 97.4                 | 16,300       | 1,100       | 46          | 29.5        | 115         |
| NF009    | 28.738219            | -88.397370            | 1489         | 3.08                  | 5.10                  | 2,391                 | 288,689      | NA                   | NA           | NA          | NA          | NA          | NA          |
| NF010    | 28.757164            | -88.388669            | 1439         | 3.07                  | 4.92                  | 786                   | 148,133      | 98.3                 | 14,300       | 323         | 43.8        | 31.9        | 109         |
| NF011    | 28.765306            | -88.366883            | 1449         | 3.02                  | 3.17                  | 1,612                 | 257,925      | 96.7                 | 17,400       | 586         | 45          | 29.6        | 114         |
| NF012    | 28.757853            | -88.344461            | 1520         | 3.04                  | 1.37                  | 370                   | 64,260       | 97.7                 | 11,500       | 627         | 42.4        | 33.4        | 103         |
| NF013    | 28.738786            | -88.335619            | 1567         | 2.97                  | 1.38                  | 1934                  | 185,182      | 98.5                 | 9,280        | 490         | 36.8        | 32.4        | 89.1        |
| NF014    | 28.719603            | -88.344700            | 1579         | 2.93                  | 1.09                  | 894                   | 128,207      | 97.9                 | 16,600       | 666         | 45.6        | 33.1        | 110         |

Appendix I. List of analytes included in the calculation of Total PAH values as presented in the ERMA Gulf Response website (<http://gomex.erma.noaa.gov>). CAS# = Chemical Abstract Service Registry Number.

| Analyte                        | CAS#           |
|--------------------------------|----------------|
| Naphthalene                    | 91-20-3        |
| C1-Naphthalenes                | NPHC1          |
| C2-Naphthalenes                | NPHC2          |
| C3-Naphthalenes                | NPHC3          |
| C4-Naphthalenes                | NPHC4          |
| Biphenyl                       | 92-52-4        |
| Dibenzofuran                   | 132-64-9       |
| Acenaphthylene                 | 208-96-8       |
| Acenaphthene                   | 83-32-9        |
| Fluorene                       | 86-73-7        |
| C1-Fluorenes                   | FLC1           |
| C2-Fluorenes                   | FLC2           |
| C3-Fluorenes                   | FLC3           |
| Anthracene                     | 120-12-7       |
| Phenanthrene                   | 85-01-8        |
| C1-Phenanthrenes/Anthracenes   | PHEN/ANTHC1    |
| C2-Phenanthrenes/Anthracenes   | PHEN/ANTHC2    |
| C3-Phenanthrenes/Anthracenes   | PHEN/ANTHC3    |
| C4-Phenanthrenes/Anthracenes   | PHEN/ANTHC4    |
| Dibenzothiophene               | 132-65-0       |
| C1-Dibenzothiophenes           | 30995-64-3     |
| C2-Dibenzothiophenes           | DBTC2          |
| C3-Dibenzothiophenes           | DBTC3          |
| C4-Dibenzothiophenes           | DBTC4          |
| Fluoranthene                   | 206-44-0       |
| Pyrene                         | 129-00-0       |
| C1-Fluoranthenes/Pyrenes       | E17148362      |
| C2-Fluoranthenes/Pyrenes       | FLUOR/PYRC2    |
| C3-Fluoranthenes/Pyrenes       | FLUOR/PYRC3    |
| Benz(a)anthracene              | 56-55-3        |
| Chrysene                       | 218-01-9       |
| C1-Chrysenes                   | CRYSC1         |
| C2-Chrysenes                   | CRYSC2         |
| C3-Chrysenes                   | CRYSC3         |
| C4-Chrysenes                   | CRYSC4         |
| Benzo(b)fluoranthene           | 205-99-2       |
| Benzo(k)fluoranthene           | 207-08-9       |
| Benzo(e)pyrene                 | 192-97-2       |
| Benzo(a)pyrene                 | 50-32-8        |
| Perylene                       | 198-55-0       |
| Indeno(1,2,3-cd)pyrene         | 193-39-5       |
| Dibenz(a,h)anthracene          | 53-70-3        |
| Benzo(g,h,i)perylene           | 191-24-2       |
| DI(Propylene Glycol)ButylEther | 29911-28-2     |
| DPnB-Peak1                     | 29911-28-2-PK1 |
| DPnB-Peak2                     | 29911-28-2-PK2 |

Blank Page

## **United States Department of Commerce:**

Rebecca Blank, Acting Secretary

## National Oceanic and Atmospheric Administration:

Jane Lubchenco, Under Secretary of Commerce for Oceans and Atmosphere and NOAA Administrator

# National Ocean Service:

Holly Bamford, Assistant Administrator



